6. Problems with RNNs, LSTMs
LING-581-Natural Language Processing 1

Instructor: Hakyung Sung
September 30, 2025

*Acknowledgment: These course slides are based on materials from C5224N @ Stanford University; Dr. Kilho Shin @ Kyocera



Table of contents

1. Lesson plan

2. Problems with RNNs

3. LSTMs

4. Bidirectional/multi-layer RNNs/LSTMs

5. Wrap-up



Review



- Language modeling



Review

- Language modeling
- Definition



Review

- Language modeling
- Definition
- Applications



Review

- Language modeling
- Definition
- Applications

- approach 1?



Review

- Language modeling
- Definition
- Applications

- approach 1?

- approach 2?



Review

- Language modeling

- Definition
- Applications

- approach 1?7
- approach 2?
- approach 3?



Review: n-gram language models

P@yy1 | Tpy e s 1) & P(Tpiq | gy oo s Tp_pya)

- ¢: position of the current token in the sequence

- n: size of the n-gram (the model looks back n — 1 tokens)

Only the last (n — 1) words matter.



Review: Conditional probability

- Definition: P(A.B)
P(A| B) = 4
- Apply to Markov assumption:
IB(@n1 Bizg 00 9 By i)
P(‘rH—l | Itv"'axt—n+2) = sz_xl ! T : 2I)+2 .
trerbt—nt
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Review: Example

Every morning, my neighbor yelled at the

(4-gram) Conditioning only on the last three words:

Every-morning—my-netghbor yelled at the _____

count(yelled at the w)
count(yelled at the) °

P(w | yelled at the) =

Suppose in the corpus:

- yelled at the occurs 600 times,
- yelled at the dog occurs 250 times, so

P(dog | yelled at the) = 0.42,
- yelled at the kids occurs 180 times, so

P(kids | yelled at the) = 0.30.



Review: Window-based neural language model

output distribution
9 = softmax(Uh + by) € RV

hidden layer
h=f(We+b)

concatenated word embeddings
e= [e(l);e@);e(-‘i);e('l)]

words / one-hot vectors
W), 2@ @) @
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Review: RNNs

Good for processing continuous (time series) dataset like words in a
sentence.
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Good for processing continuous (time series) dataset like words in a
sentence.

® This is an awesome
® sentence that was
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Review: RNNs

- ldea: Repeatedly apply the same weight matrix W at each time
step

- Maintain a hidden state over time, feeding it back into the
network to capture temporal dependencies

53 G

outputs
(optional) {

hidden states {

input sequence
(any length) {

) ) e 2@
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3. At each time step ¢, the model outputs a probability distribution
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Review: RNNs

1. Start with a corpus, represented as a sequence of words
wlv 7wT717wT'
2. Feed this sequence into the RNN-based language model.

3. At each time step ¢, the model outputs a probability distribution
y, over the vocabulary.
- Internally, the RNN updates its hidden state h,, then applies a
linear layer followed by softmanx:

y,; = softmax(W_h, +b,).
- Each component of y, corresponds to
P(wt+1 =v; | wy, ... ,wt).,

i.e,, the probability that the next word is v,.
- Put simply, at every step ¢, the model predicts the likelihood of
each possible next word given all preceding words.

16



- Loss at step t:

4
59 = =3 Ptoggl? = —logitl,
g=il

where:

- y®: one-hot vector for the true next word w,. .

- ®: predicted probability distribution over the vocabulary from
the softmax layer.

- This is the cross-entropy loss between the predicted distribution
and the true label.

- higher loss? lower loss?

- https://www.desmos.com/calculator


https://www.desmos.com/calculator

Review: RNNs+Backpropagation




Review: NLP applications

POS tagging

DT J NN VBN IN DT

the startled cat knocked over the vase

19



NER tagging

to site og og InToday's PaperAdvertisementSupported ORG byF B.|. Agent _ B
_ in Texts, Is FiredimagePeter Strzok, atop F.B.L. GPE counterintelligence agent who was taken off the special counsel
investigation ater his disparaging texts about Prosident |FTRUMpIPERSONI] wero uncovered, was fired. [[CIGUTAIKURPAIGK PERSON | for | The Now York

and [Wichael S SCImidiAUG PERSON | 13 cARDINAL , 201BWASHINGTON caromar — [Peler Sirzok
I GPE senior intelli agent who President m in inflammatory text messages and helped
oversee the _email and Russia GPE investigations, has been fired for violating bureau policies, Mr. _ s lawyer
said Monday DATE .Mr. Trump and his allies seized on the texts — exchanged during the 2016 DATE campaign with a former F.B.l. GPE lawyer,
R - - [RERRIEER] vostoston os on negimsts v vt wr. (NN wro ose over [0SR
DATE atthe F.BI. GPE tobecome one of its most experienced counterintelligence agents, was a key figure in _the early months DATE  of the
inquiry Along with writing the texts, Mr. _was accused of sending a highly sensitive search warrant to his personal email account The

F.B. GPE had been under immense political pressure by Mr. _lo dismiss Mr. _ , who was removed  last summer
DATE from the staff of the special counsel, W . The president has repeatedly denounced Mr. m in posts on

* A named entity is a specific word or phrase that refers to a
particular person, place, organization, money, time or other

rea [-WO rl.d Va [ UES. nttps://www.wisecube.ai/blog/named-entity-recognition-ner-with-python/

20


https://www.wisecube.ai/blog/named-entity-recognition-ner-with-python/

Sentiment classification

positive

Sentence
encoding

ecoo)
oo)
ecoo)

overall / enjoyed the movie

ecoo]

Q

lot

21



Question answering

Answer: German
7

=
p
A %
N %0
7 (@ .
NS W
o X o %
G0 «& (RN
NOT Y (%

Context: Ludwig
van Beethoven was
a German
composer and
pianist. A crucial
figure ...

N

Question: what nationality ~was  Beethoven

22



Speech recognition

RNN-LM
Al
r N\
what’s the weather

Input (audio)

conditioning
>

<START>  what’s the
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Lesson plan




+ Problems with RNNs
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+ Problems with RNNs
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- Problems with RNNs
- LSTMs
- Bidirectional/multi-layer models
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Problems with RNNs




Problem with RNN 1: Vanishing gradient

J1(0)

25



JD(0)

h()
h3)
w__|2]
2 3]
e e
4 @
()
aJ®
ohm ~ ?

26



R

JD(0)

h(4)

A

oh®  5J&

oh)

- X
oh(M) " 9R@)

27



JD(0)

R (@)
h h®
w |8
° w m
o )
8 5
()
aJw  on® R\
e y Oh®) . aJ@
Oh@ " OhG)

28



JD(0)

R

aJ@ oh(®2 Ih® R aJ®

o~ R " oD~ R oh™

tldr: If each step’s gradient is too small, multiplying across many
steps makes it shrink exponentially.

The overall gradient — 0, so the model cannot learn long-range
dependencies.

29



More explanation: long-term dependency
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More explanation: long-term dependency and chain rule

0L, 0L, 353 30, dhy | DL, 85 Do, dhy Bhy
W 8y; do, dh, OW = 8; 00, dh, dh, AW

31



As we can see here, as time increases (as embedding nodes increase)

dL,_0L, 35; 90, dhy | 0L, 35 D03 Ohy Dhy
aW 0y; 90, dh; OW  35; Do, Ohy Jhy BW

32



As we can see here, as time increases (as embedding nodes increase)

dL,_0L, 35; 90, dhy | 0L, 35 D03 Ohy Dhy
aW 0y; 90, dh; OW  35; Do, Ohy Jhy BW
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As we can see here, as time increases (as embedding nodes
increase), the part that needs to be calculated by the chain rule

dLs_0L3 053 903 Ohs | OLs DF3 903 Ohy Ohy | Ly 055 D05 dhg dh; Oy
AW 8y; o3 dhy OW * 93; 003 dhg Oh, OW - 333 003 dhg Ohy, Ohy AW
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As we can see here, as time increases (as embedding nodes
increase), the part that needs to be calculated by the chain rule
keeps

Ly 0Ly 053 304 Ohy | DLy DY 304 Ohy Ohg | Ly 055 004 dhy Ohs Ohy
W 0y; 004 Ohy OW = 33; 00,4 0y Ohz OW 855 004 Ohy Ohz hy OW
L, 055 004 dhy 0hs dhy Oy

" 391 204 9hy 0y dhy Ohy OW

36



As we can see here, as time increases (as embedding nodes
increase), the part that needs to be calculated by the chain rule
keeps increasing

dLs_8Ls 955 805 dhs | dLs 355 dos dhs Bhy | Ls 35 dos dhs dhy Ohs
W 0y 005 Ohs OW 953 905 Ohs Oh, OW 035 005 Ohg Ohy Ohy OW
L5 05 005 Ohs dh, Ohy 0k, dLs 0¥ 005 dhsdhy dhs dhy ok,
873 905 Ohg Ohy Oy Ohy OW 855 005 dhg Ohy Ohs 0y Ihy AW

37



If these parts are smaller than 1

8Ls_dLs 855 905 dhs _ dLs 855 dos dhs dhy _ dLs 855 dos dhs Iy dhy
W 055 005 Ohs OW 975 905 Ohs Oh, OW 053 005 Ohs Ohy Ohs OW
L 055 805 Ohs dh, dhy dh, dLs 075 005 dhsdhy dhy dhy dhy
* 955 005 Ohs 0h, 01 Oh, OW * 035 005 Ohs Ohs Oy Oh; Dhy OW

<1

38



Then, as we keep multiplying through the chain rule, the gradient
value for distant parts becomes smaller

dLs_0Ls 055 905 dhs | Ls dF5 905 Ohs Ohy | dLs 055 Do dhs dhy Ohy
W 8y; dog dhs OW 355 005 dhs dh, W - 355 005 Ohg Ohy dhy OW
, L5 075 005 hs Ohy Ohy Ok, ! VL Fys dos Ohe DRy OR; 0N Ok
" 955 D05 Ohs dh, Ohs Oh, OW & 335 105, Phs.Wr ke A2 Ala § aw
eg. 0.1x0.3x0.2x0.1 = 0.0006

39



A smaller gradient means that its effect on learning is negligible,

dLs_0Ls 855 905 dhs  OLs 55 Do dhs dhy _dLs 355 905 dhs dhy Ohy
W 033 005 Ohs OW = 93 005 Ohs dhy W 955 005 dhs dhy Dhy OW
, 0L 075 905 dhs Ohy Ohs Oy § VL Iys dos Ohe Ohy Ok; 05 OWy s
" 952 905 0hs 0h, 0hs 0k, OW 'P}’s.a.o.s.afksﬁm@’h@’h?h o ‘

e.g., 0.1x0.3x0.2x0.1 = 0.0006

40



As a result, the farther back in time the input is, the smaller its effect
on learning becomes

dLs_0Ls 855 905 dhs  0Ls 075 Do Ohs dhy _ OLs 355 305 Ohs dhy dhy
W 93 005 dhs OW = 933 905 dhs dhy OW  0F3 D05 Ohs Ohy dhs OW
, 05 955 905 dhs 0hy Oh; Ohy V915 G55 dos Ohs Ohs Oh3 Oh3 O
¥ 952 905 0hs 0h, Ohs 0k, OW @;v;.a.v.s.a.ns.a.fwmeaz@h 218 ‘
eg. 0.1x0.3x0.2x0.1 = 0.0006

41



Example:

LM task: When she tried to print her tickets, she found that the printer was out of toner.
She went to the stationery store to buy more toner. It was very overpriced. After
installing the toner into the printer, she finally printed her
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word “tickets” at the end.
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Example:

LM task: When she tried to print her tickets, she found that the printer was out of toner.
She went to the stationery store to buy more toner. It was very overpriced. After
installing the toner into the printer, she finally printed her

- To learn from this training example, the LM needs to model the
dependency between “tickets” on the 7th step and the target
word “tickets” at the end.

- But if the gradient is small, the model can't learn this
dependency

- So, the model is unable to predict similar long-distance
dependencies at test time

42



Problem with RNN 2: Exploding gradient

- When gradients become very large:
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Problem with RNN 2: Exploding gradient

- When gradients become very large:
- A single update step can overshoot the minimum
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Problem with RNN 2: Exploding gradient

- When gradients become very large:

- A single update step can overshoot the minimum
- and destabilize or even blow up the model..!

43



Problems: Summary

- RNNs are equivalent to a deep network of depth 7" when
unrolled over time (T = sequence length/time steps)
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Problems: Summary

- RNNs are equivalent to a deep network of depth 7" when
unrolled over time (T = sequence length/time steps)
- Parameter sharing: the same weight matrices are multiplied at
each time step.
- If each multiplication factor:
- is < 1, gradients shrink exponentially (vanishing).
- is > 1, gradients grow exponentially (exploding).

- Standard feedforward nets have limited depth, so this extreme
behavior is less pronounced.

4l



Vanishing problem: Solution

Solutions explored:

- Separate memory cell (e.g., LSTM) with gating mechanisms to
add/erase information.
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Vanishing problem: Solution

Solutions explored:

- Separate memory cell (e.g., LSTM) with gating mechanisms to
add/erase information.

- Direct pass-through connections (attention, residual links) for
better gradient flow.
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LSTMs




Overview

Separate memory cell with gating mechanisms to add/erase
information.

46



1. Structure

Then, let's understand LSTM’s separate memory cell.

CSe_q >® o CS;
> L’ * >
| % tanh(CSt)
Input Gate Output Gate
I = a(W;X,) 0y =o(W, X:)
Forget Gate Candidate Gate
Fr = o(WrX,) C, = tanh(W,X,)
HS,_, HS,
- O * »
Xe=x O HS—y Z; = W,HS,
Xt *Zt

softmax

V5
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The secret lies in the information called the cell state (CS).

CSi—1 o o cs$
L »Q *
* tanh(CS)
I—>®
Input Gate Output Gate '
Iy = a(WiX;) 0, = a(WoX;)
Forget Gate Candidate Gate
Fy = o(WsX,) C; = tanh(W,X,)
HS¢_4 * S,
el (O * >
Xe=x QO HS—y Z; = W,HS,
Xt *Zt

softmax

V5
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And LSTM has four gates that differ from an RNN.

CSe_q ~E o CS;
) L * >
f tanh(CS;)
I—}@ g
Input Gate Output Gate '
I = o(WiX,) 0, = a(W,X,)
Forget Gate Candidate Gate
Fy = a(WrX,) C; = tanh(W X;)
HS,_, HS;
il O >

v

Xe=x. O HS;— Z; = W,HS,

Xt *Zt

softmax

V5
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And LSTM has four gates that differ from an RNN.

CSe_s R o Cs,
) » * >
* tanh(CSt)
ﬁ@
Input Gate Output Gate
I = o(WiX;) 0 = E(WoXc)
Forget Gate Candidate Gate
Fy = o(WpX¢) C, = tanh(W X;)
HS,_, HS,
il O * >
=x ©Q HS;4 Z, = W,HS,
Xt *Zt
softmax

V5,
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And LSTM has four gates that differ from an RNN.

CS;—1 R o Cs,
L » v »
* tanh(CS;)
®
Input Gate Output Gate ’
I = o(WiX;) 0¢ = o(WoX:)
Forget Gate Candidate Gate
Fo=oWX,) | Cc=tanh(W.X,)
HS,_, HS,
—’ O

v

Xe =x¢ O HS¢—q Z, = W,HS,

Xt *Zt

softmax

V5
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And LSTM has four gates that differ from an RNN.

CS;_q R - Cs,
) » * >
r tanh(CS;)
> ‘
A
Input Gate Output Gate '
I = o(WiX;) 0y = (W X¢)
Forget Gate Candidate Gate
Fy = o(WpX¢) C; = tanh(W X;)
HS,_, HS,
il O * >
Xe =x¢ O HS;—q Z, = W,HS,
Xt *Zt
softmax
yi
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And LSTM has four gates that differ from an RNN.

CS;_q R - Cs,
ey » * »
r tanh(CS;)
ﬁc
Input Gate Output Gate
I = o(WiX;) 0, = o(WX¢)
Forget Gate Candidate Gate
Fy = o(WpX¢) C, = tanh(W X;)
HS,_, e HS,
—l >

v

Xe =x¢ O HS;—q Z, = W,HS,

Xt *Zt

softmax

V5,



Originally, each gate and layer should include a bias term.

Input Gate:
I = o(WiX, + by)

Output Gate:
O = a(WoX¢ + bo)

CS,

v
®

o
|

CS,1 | ®
e

Forget Gate:
Fy= o(W;X, + bf)
\ Forget Gate Candidate Gate
Fo=oWX,) | Co=tanh(W.X)

HSt—l' o) 4 14

Input Gate Output Gate
I = o(WiX;) 0y = (W X¢)

¥ v

tanh(CS;)

>

HS,

Xe =x¢ O HS;—q
Xt

Candidate Gate:
C; = tanh(W,X; + bc)

v

Z, = W,HS,

*Zc Niz-= W,HS, + b,

softmax

V5,
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But for convenience, we'll omit them for now.

CS;_q R o Cs,
) > * >
* tanh(CS;)
' ® t.
Input Gate Output Gate '
I = o(WiX;) 0 = (W X:)
Forget Gate Candidate Gate
Fo=o(WX) | Co=tanh(W.X,)
HS,_, A HS,
il O * »
th=XtOHS:—1 Z, = W,HS,
Xt *Zt

softmax

V5
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Now, let's see how each gate processes information.

CSe_s R o Cs,
) » * >
* tanh(CS;)
ﬁ@ ¢
Input Gate Output Gate '
I = o(WiX;) 0y = (W X¢)
Forget Gate Candidate Gate
Fy = o(WpX¢) C, = tanh(W X;)
HS,_, A HS,
il O * >
Xe =x¢ O HS;—q Z, = W,HS,
Xt *Zt

softmax

V5,
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First, as the name suggests, the Forget Gate decides which

information to erase (forget).

CSe_q -~ o CS;
) L * >
* tanh(CS,)
I—}@ ¢
Input Gate Output Gate '
Iy = a(WiX;) 0¢ = a(WoX;)
Forget Gate Candidate Gate
Fo=oWX,) | | = tanh(Wx,)
HS,_, HS,
- O >

Xe=x O HS;—
Xt

v

Z; = W,HS,

iz

softmax

V5
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The input to the the Forget Gate is the concatenation of the previous
hidden state (HS,_,) and the current input (z,).

CS—q Cs,
>® > O ¥ g
tanh(CS,)
I—>® ¢
Input Gate Output Gate '
Ie = a(WiX,) 0, = o(WoXy)
Forget Gate Candidate Gate
Fe = oc(WsX;) C¢ = tanh(W.X,)
HS;_q * * S,
el (O * »

X =2 O HS;—q Z, = W,HS,

Xt *Zt
softmax

V5
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Concatenate?

59



Concatenate? Joining two vectors/matrices end-to-end.

CSe_q ~E o CS;
) L * »
f tanh(CS;)
I—}@ g
Input Gate Output Gate '
I = o(WiX,) 0, = o (W,Xy)
Forget Gate Candidate Gate
Fe = o(WrX,) C¢ = tanh(W.X,)
HS,_, HS;

Xt *Zr
[1 2 3] O 4 5 6] softmax
V5



Concatenate? Joining two vectors/matrices end-to-end.

CSe—1 Y NN CSe
) L’ * >
I % tanh(CS;)
Input Gate Output Gate '
I = o(WiX;) 0y = (W X¢)
Forget Gate Candidate Gate
F, = o'(Wth) C = tanh(W X,)
HSt . HS,
X, = x; © HS;1} = W, HS,
xt *Zt
[1 2 3 Ol 5 6] softmax
=12 3 45 6] *}7}
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By doing this, the concatenated x, becomes a kind of short-term
memory that bundles the previous hidden state and the current
input together.

CSt—1 .~ »~a CSe
Ll A4 L’ * >
I % tanh(CS;)
Input Gate Output Gate
e = o(Wi,) T 0= oty ¥
Forget Gate Candidate Gate
Fe = o(WrXe) C; = tanh(WeX;)
HS,_, A A HS,
el (O
Xe = x¢ O HSt—q Z, = W, HS,
Xt *Zt

[1 23 OIl4 5 6]

softmax

=[1 2 3 4 5 6] *}7}
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Remember: this x, serves as the input to all gates in the LSTM.

CS;_q R o cs,
iy » * »
* tanh(CS;)
ﬁ@ ¢
Input Gate Output Gate '
I = o(WiX;) 0y = (W X¢)
Forget Gate Candidate Gate
Fo=o(WX,) || Cc=tanh(WeX,)
HS,_, HS,
=0 ¥ >

X = x; O HSt—1 Z, = W,HS,
Xt *Zt

softmax

V5
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The first thing to note in the Forget Gate is:

CSe_s R o Cs,
) » * >
* tanh(CS;)
ﬁ@
Input Gate Output Gate '
I = o(WiX;) 0y = (W X¢)
Forget Gate Candidate Gate
Fy = o(WX¢) C, = tanh(W X;)
HS,_, HS,
il O * >
Xe =x¢ O HS;—q Z, = W,HS,
Xt *Zt
softmax

V5,
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There is a sigmoid function inside the Forget Gate.

CS;_1 R o Cs,
ey » * »
f tanh(CS;)
. ® t.
Input Gate Output Gate '
I = o(WiX;) 0y = (W X¢)
A

Candidate Gate

Ce = tanh(WeX;)
HS,
>

Xe =x¢ O HS;—q
Xt

v

Z, = W,HS,

2

softmax

V5,

64



As we learned about the sigmoid, regardless of the input,

CS;_q R o Cs,
ey » * >
* tanh(CS;)
ﬁ@ ¢
Input Gate Output Gate '
I = o(WiX;) 0y = (W X¢)
Forget Gate Candidate Gate
F £ a(iVpX,) C, = tanh(W.X;)
HS; 1. & HS;
il O >

fxt =xt O HS;—q
Xt

v

Z, = W,HS,

2

softmax

V5,
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it returns a value between 0 and 1.

CS;_q R o Cs,
iy > * >
* tanh(CS;)
ﬁ@ t
Input Gate Output Gate '
I = o(WiX;) 0y = o(WoX:)
Forget Gate Candidate Gate
Fe = a(WpX¢) Ce = tanh(WeX:)
HS;_4 v‘ * HS;
il O »

— th =x; Q HS;—s Z, = W,HS,
: X

2

softmax

V5,

66



So, what the Forget Gate does is: it takes the (just-prior + current)
input, multiplies by weights,

CSe—s

»

Input Gate
Ip = a(WiX;)

Forget Gate
F £ a(iV;X,)
—

‘ ﬁ

CS;

> 7

tanh(CS)

=D

®

Output Gate
0. = oz P

—

Candidate Gate
Cy = tanh(W,X,)

HS,

Xe=x O HSt—y

v

Z, = W,HS,

\&

softmax

V5
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and maps it to values between 0 and 1.

CS;_q R o Cs,
) » * >
* tanh(CS;)
ﬁ@
Input Gate Output Gate '
I = o(WiX;) 0y = (W X¢)

Forget Gate Candidate Gate

Fe £ a(iVpX,) C, = tanh(W.X;)
HS; 1. & HS;
——l »

(O]
1
Xt

v

Z, = W,HS,

2

softmax

V5,
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Then, these 0-1 values meet the cell state values

CSt_1 5 N CS;
1 L * >
f tanh(CS,)
I_'®
Input Gate Output Gate '
Iy = a(WiX;) 0, = a(WoX;)
Forget Gate Candidate Gate
Fy = o(WrX,) C; = tanh(W,X,)
HS¢_4 * HS,
- O * »
Xe=x O HS;— Z; = W,HS,
Xt *Zt

softmax

V5
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and undergo element-wise multiplication.

(R

CSi—q . A CSe
» L * »
I g tanh(CS;)
Input Gate Output Gate ’
I = o(WiX;) 0¢ = o(WoX:)
Forget Gate Candidate Gate
Fo=oWX,) | Cc=tanh(W.X,)
HS,_, HS;
il (O * »
Xe =x¢ O HS¢—q Z, = W,HS,

Xt

A&

softmax

V5

70



Notes: Element-wise multiplication means multiplying two matrices
by their corresponding elements.

0 1 1

3 7 2
0 1 0

1 5 6
1 0 1

1 3 2
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Notes: Element-wise multiplication means multiplying two matrices
by their corresponding elements.

03] {17] |12 o| 7 |-

01]|25]1%|] = [|o|s5]o

191103 |12 1|0 2




We do this so that entries near 1 are kept

73



and entries near 0 are erased (forgotten).
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For example, suppose the Forget Gate's output consisted only of 0s

and 1s.

CSt_q v N CS;
PAS L * »
* tanh(CS;)
I—>®
Input Gate Output Gate '
Iy = a(WiX;) 0, = a(WoX;)
Forget Gate Candidate Gate
Fo=oWX) | Co=tanh(W.X,)
HS,_, HS,
el O * >
Xe=x O HS— Z; = W,HS,
Xt *Zt

softmax

V5
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Where the Forget Gate outputs 0, the element-wise product

CSes L= o Cs,
14829 » * >
* tanh(CS;)
ﬁ@ ¢
Input Gate Output Gate '
I = o(WiX;) 0y = (W X¢)
Forget Gate Candidate Gate
Fy = o(WpX¢) C, = tanh(W X;)
HS,_, 4 HS,
=0 ¥ >
X =x O HSt— Z, = W,HS,
Xt *Zt

softmax

V5,
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turns those cell-state entries to 0 (or effectively very small).

CS;_1 Lo o Cs,
o » * >
* tanh(CS;)
I_>® ¢
Input Gate Output Gate ’
Iy = o(W;X;) 0¢ = o(WoX:)
Forget Gate Candidate Gate
Fe = o(WpX,) C; = tanh(W.X;)
HS,_, A HS;.
- (O * »
Xe=x, O HS;—y Z, = W,HS,
Xt *Zt

softmax

A7
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In short, as the cell state (CS) passes through the Forget Gate, it

forgets what should be forgotten.

CS—q R . c5$
Ll %4 Ll *
tanh(CS,)
I—>®
Input Gate Output Gate '
Ip = a(WiX;) 0, = o(WoXy)

Forget Gate Candidate Gate

Fy = o(WrX,) Cy = tanh(W,X,)
HS,_4 HS,
el (O

Xe=x O HSt—y
Xt

; >

Z, = W,HS,

\&

softmax

V5
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Next, the Input Gate. Its computation is the same pattern as the

Forget Gate

CSi_y Cs,
»
tanh(CSt)
Input Gate Output Gate
I = s(WiXe) 0. = oz P
Forget Gate Candidate Gate
Fo=oWX) | Co=tanh(W.X,)
HS,_; HS,
> * >
Xe =2x¢ O HSt—q Zy = W,HS,
Xt *Zt

softmax

A4
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because both use a sigmoid function.

CS;_q R o Cs,
ey » * >
% tanh(CS;)
Input Gate Output Gate '
1, = a(ViXe) 0, = a(W,X,)

Forget Gate Candidate Gate

Fe & a(VrX,) C, = tanh(W.X;)
HS;_4 A HS,
il O »

Xe =x¢ O HS;—q

Xt

v

Z, = W,HS,

2

softmax

V5,
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(But) the weights are different.

CS;_q R o Cs,
) » * >
* tanh(CS;)
®
Input Cate Output Gate
I, = (W) 0. = oz P
Forget Cate Candidate Gate
Fe = d(Wpkty) C, = tanh(W.X;)
HS¢_y f HS;
—_—p 0 ¥ >
=x¢ © HSt—1 Z, = W,HS,
Xt *Zt
softmax

V5,
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This Input Gate works together with the Candidate Gate

CS_q R o Cs,
) > * >
% tanh(CS;)
Input Gate Output Gate '
I, = o(WiX,) 0, = a(W,X,)
Forget Gate Candidate Gate
Fy = o(WpXe) Ce = tanh(W.X;)
HS,_, o HS;
——pp * >
X =x O HSt— Z, = W,HS,
Xt *Zt

softmax

V5

82



to update the cell state with what should be “remembered.”

CS;_q R - Cs,
) » 4} * >
tanh(CS;)
Y ‘
A
Input Gate Output Gate '
Iy = a(WiX;) 0y = (W X¢)
Forget Gate Candidate Gate
Fy = o(WpX¢) C; = tanh(W X.)
HS,_, HS,
=0 ¥ >
X =x O HSt— Z, = W,HS,
Xt *Zt

softmax

V5,



The Candidate Gate uses tanh rather than a sigmoid inside.

CS;_q R - Cs,
ey » * »
1r tanh(CS;)
> ‘
a2
Input Gate Output Gate '
I = o(WiX;) 0y = (W X¢)
Forget Gate Candidate Gate
Fy = o(WpX¢) C; = tanh (W X.)
HS,_, HS,
il O »

Xe =x¢ O HS;—q
Xt

v

Z, = W,HS,

2

softmax

2
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The tanh function maps inputs to values between —1 and 1.

CSe_s R o Cs,
W » * >
* tanh(CS;)
I—}@ g
Input Gate Output Gate '
I = o(WiX;) 0, = a(WpX;)
Forget Gate Candidate Gate
Fy = o(WpX¢) C; = tanh (W X.)
HS;, 4 HS;
il O * >
fxt =x¢ © HSt—1 Z; = W,HS,
Xt *Zt
softmax

V5




So, what the Candidate Gate does is: multiply the input by weights,

CS_q R o Cs,
W » * >
* tanh(CS;)
I—'@
Input Gate Output Gate '
I = o(WiX;) 0, = a(WpX;)
Forget Gate Candidate Gate
Fe = a(WyX,) C, = tanh(W.X,)
HS;, 4 HS;
il O * >
Z, = W,HS,
X,
t *Z .
softmax

V5



and then preserve the sign while normalizing the range.

CS;_1 R - Cs,
) » * >
1r tanh(CS;)
> ‘
a
Input Gate Output Gate '
I = o(WiX;) 0 = o(WoX:)
Forget Gate Candidate Gate
F; = o(WyX,) C, = tanh(W.X,)
HS,_, HS,
il O * »
Z, = W,HS,
Xt *Zt
softmax
\éZ
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Then, via element-wise multiplication with the 0-1 values from the
Input Gate,

CSt—l R 2Ly Cst‘
Ll od » \-l* * »
= tanh(CS;)
) ‘
Y
Input Gate Output Gate '
Iy = a(WiX;) 0y = o (WpX;)
Forget Gate Candidate Gate
Fo=o(WX) | Ce=tanh(W.X,)
HSi1y o 4 4 HS,
> * >
fxt=xtoHSt-1 Zy = W,HS,
Xt *Zt

softmax

V5
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some Candidate outputs are pushed close to 0 while others are kept

as they are.
CSi—1 o o CS;,
) wQ * >
% tanh(CS;)
Input Gate Output Gate '
I = o(WiX;) 0 = o (WoX¢)
Forget Gate Candidate Gate
Fe = a(WrXe) C; = tanh(WeX;)
HS,_, HS
il ()
Xe =2x¢ O HSt—q Z, = W, HS,

Xt

\&
softmax

A4

89



Those kept values

CStq

R o
Ll » \l* *
® tanh(CS;)
I I Y
Input Gate Output Gate '
Iy = a(WiX;) 0, = a(WoX;)
Forget Gate Candidate Gate
Fy = o(WpX,) C; = tanh(W.X.)
HS,_, 4
Xe=x O HS;— Z; = W,HS,
Xt *Zt

softmax

V5



become the parts of the current input (short-term) to be

remembered.
CSt—1 o > Cstk
L sl LA’ * >
% tanh(CS;)
Input Gate
I = o(WiX;) I >

Forget Gate andidate Gate

Fy = o(WrX,) C; = tanh(W,X;)
HS,

Z, = W,HS,

2

softmax

A4

9



Then the remaining values are added into the cell state to update it.

CSe_q -~ o~ CS;
Ll » \JA * »
T tanh(CS;)
I—>® ¢
Input Gate Output Gate '
Iy = a(WiX;) 0, = a(WoX;)
Forget Gate Candidate Gate
Fy = o(WpX,) C; = tanh(W.X.)
HS¢_4 * HS,
- (O * >
Xe=x O HS;— Z; = W,HS,
Xt *Zt

softmax

V5
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In short, given the previous hidden state and the current input,

Previous CS
S _ cs,
) L * >
* tanh(CS;)
I—>® ¢
Input Gate Output Gate '
Iy = a(WiX;) 0, = a(WoX;)
Forget Gate Candidate Gate
Fe = o(WrX,) C; = tanh(W.X.)
HS,_,. A HS,
0 * >
Xe=x O HS;— Z; = W,HS,
Xt *Zt

softmax

V5
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we forget what should be forgotten from the previous cell state,

Previous CS+

Previous CS Things to forget
CSt—1 ‘ »® J CSe

5 v v
tanh(CS;)

—

— R D

Input Gate Output Gate '
Iy = a(WiX;) 0, = a(WoX;)
Forget Gate Candidate Gate
Fy = o(WsX;) Ce = tanh(WeX;)
HS¢_4 * HSe
- (O * >
Xe=x O HS;— Z; = W,HS,
Xt *Zt
softmax

V5

9%



and remember what should be remembered,

Previous CS+

Previous CS+ Things to forget+

Previous CS Things to forget Things to remember
CSe—q | >® } J

cs,
¥ >

tanh(CS;)

1
®

Output Gate '

Input Gate
I = a(WiX;)

0¢ = o(WoXe)
Forget Gate Candidate Gate
Fe = o(WrX,) Ce = tanh(W X¢)
HS,_, HS,
el (O * »
Xe=x O HSt— Z, = W,HS,
Xt *Zt
softmax

A7
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thereby updating LSTM’s long-term memory (the cell state).

Previous CS+
Previous CS+

Things to forget+
Previous CS Things to forget Things to remember
CSe—y | J R CS.
— ) q * >
I % tanh(CS;)
Input Gate Output Gate
I = o(WiK,) T 0. = sty ¥
Forget Gate Candidate Gate
Fe = o(WrX,) Cp = tanh(W X;)
HS, s 4 HS
el (O * »
Xe=x O HSt— Z, = W,HS,
X
t *Zt
softmax

V5

96



Next, we normalize this long-term state via tanh (to [—1, 1]),

CSiq CS,

v
®

»
>

-0

I_>®
Input Gate Output Gate
I = o(WiX;) 0¢ = o(WoX:)
Forget Gate Candidate Gate
Fe = o(WrX,) Cp = tanh(W X;)
HS,_, A A HS;.
el (O * »
th=X:OHSt—1 Z, = WyHS,
X,
t *Zt
softmax

V5

97



and take an element-wise product with the Output Gate’s values.

CSi_y CS,

Fany
L\ >
f tanh(CS;)

Input Gate Output Gate { ®
I = o(WiX;) 0; = o(WoXe)

Forget Gate Candidate Gate
Fe = o(WrX,) Cp = tanh(W X;)
HS,_, A A HS,
el (O
fxt =x; O HSt—q

Xt

v
®

»
»
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This produces the new hidden state HS,.

CSi4 R o CS,
e » * >
f tanh(CS;)
I_>® ¢
Input Gate Output Gate {
I = o(WiX;) T 0¢ = o(WoXe) > ®
Forget Gate Candidate Gate
Fo=oWX,) | Cc=tanh(W.X,)
HS,_, HS,
el (O
th=X:OHSt—1 Z, = W, HS,
Xt *Zt

softmax

A4
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Just as the collaboration of the Input Gate and Candidate Gate keeps
the “to-be-remembered” part of the current (short-term) input,

€Sty CS
* >
tanh(CS;)
Output Gate
0 = (W X:) >
Forget Gate Candidate Gate
Fo=oWXy) | JC = tanh(WeX,)
HS,_, A HS,
il O * »
Xe=x O HSt— Z, = W,HS,
Xt *Zt
softmax

V5



the collaboration of the Output Gate and tanh(C'S,) creates a new
hidden state (HS,) from the updated cell state (C'S,) that reflects the
characteristics of the current input (X,) more strongly.

CSe_q ~ o o CS;
) L >
* tanh(CS;)
—i ==
Input Gate Output Gate >®
Ip = a(WiX;) 0, = a(WoX:)
Forget Gate Candidate Gate
Fr = o(WiX,) C, = tanh(W,X,)
HS;_q 4 HSe
el (O * >
Xe=x O HSt— Z; = W,HS,
Xt *Zt
softmax

V5
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Thus this hidden state (HS,) tends to show more short-term

characteristics than C'S,.

S 5 > 3 =S
I % tanh(CS;)
hl ?‘:(32;) T >
Forget Gate Candidate Gate
F = o(WrX,) C; = tanh(W.X;)
HSeay o HS

Xe =x¢ O HS¢—q
Xt

Z, = W,HS,

2

softmax

V5
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So if C'S, carries more long-term information,

CSt—l R 2.y Cst‘
Ll %4 Ll * »
I % tanh(CS;)
Input Gate Output Gate '
I = o (WiX;) 0 = o (WoX¢)
Forget Gate Candidate Gate
Fe=o(WpX,) || Co=tanh(WeX,)
HS,_, HS,
il () »
X =x O HSt— Z, = W, HS,
Xt *Zt
softmax

A4
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HS,, given the same inputs, carries information closer to short-term,

CSt—1 .~ »a CSe
Ll o4 L’ * >
I % tanh(CS;)
Input Gate Output Gate '
I = o (WiX;) 0 = o (WoX¢)
Forget Gate Candidate Gate
Fe = a(WrXe) C; = tanh(WeX;)
HS,_, HS,
il () >
Xe =2x¢ O HSt—q Z, = W, HS,
Xt *Zt

softmax

A4
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and by leveraging these two information flows, LSTM can handle
long-term dependency problems more effectively than a vanilla
RNN.

CSe—a N @ CSe
>& >4 2 >
* tanh(CS;)
I_>® ¢
Input Gate Output Gate
Ie = a(WiX,) T 0, = o(WoXe) '®
Forget Gate Candidate Gate
Fy = o(WsX;) C; = tanh(W.X;)
HS;_q * * HSo
el (O * >
Xe=x QO HS;—y Z; = W,HS,
Xt *Zt

softmax

V5



2. Real-world success in NLP tasks

- Introduced by Hochreiter & Schmidhuber (1997)
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2. Real-world success in NLP tasks

- Introduced by Hochreiter & Schmidhuber (1997)

- In 2013-2025, LSTMs started achieving state-of-the-art results in
NLP tasks, including:
- handwriting recognition, speech recognition, machine translation,
parsing, and image captioning, as well as language modeling
- Recently (2019-2025), Transformers have become dominant for
all tasks
- For example, in WMT (a Machine Translation
conference/competition):

- In WMT 2014, there were 0 neural machine translation systems
- In WMT 2016, the summary report contains RNN 44 times (and these

systems won)
< In WMT 2019: RNN 7 times, Transformer 105 times
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Bidirectional/multi-layer
RNNs/LSTMs




1. Motivation

- A standard RNN only uses past context.
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1. Motivation

- A standard RNN only uses past context.

- For many NLP tasks (e.g, tagging, parsing, translation), knowing
both previous and future contexts improves predictions.

- Bidirectional RNNs address this by processing the sequence in
both directions.
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Task: Sentiment Classification

. We can regard this hidden state as a
pOSItIVE representation of the word “terribly” in the
context of this sentence. We call this a
contextual representation.

Sentence
encoding

the movie was terribly  exciting

!

These contextual
representations only
contain information
about the left context
(e.g. “the movie was”).

What about right
context?

In this example,
“exciting” is in the right
context and this
modifies the meaning of
“terribly” (from negative
to positive)
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Concatenated
hidden states

= eeeeccoo

Backward RNN

ee

o0
)

Forward RNN

XX

@

the movie was terribly  exciting

Forward + Backward: The contextual representation of “terribly” has
both left and right context.
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This is a general notation to mean
“compute one forward step of the
RNN” —it could be a simple RNN or
LSTM computation.

Forward RNN Tf(t) :(T{(t—l), x(t)) } Generally, these

two RNNs have
Backward RNN ﬁ(t) = RNNBVV(%(H—I), w(t)) separate weights
Concatenated hidden states = [T{(t); ﬁ(t)]

On timestep t:

We regard this as “the hidden
state” of a bidirectional RNN.
This is what we pass on to the
next parts of the network.
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2. More information

- Hidden states combine forward and backward context.

- Require access to the entire sequence (not suitable for language
modeling).

- Very effective for encoding tasks (e.g, tagging, parsing,
translation).

- Example: BERT (Bidirectional Encoder Representations from
Transformers) leverages bidirectionality for powerful contextual
embeddings.

- Can be extended by stacking layers (Multi-layer RNNs).
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+ RNNs
- Problems with RNNs: Vanishing & Exploding
- LSTMs: Short-term/Long-term

- Four gates

- 1. Forget gates

+ 2. Input Gate

- 3. Candidate Gate
+ 4. Output Gates

- Bidirectional RNNs for more context
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Where we are at

6 9/30 Translation, Seq2Seq, Attention
10/2 Lab 6 — RNNs Lab exercise 6
10/7 Self-attention & Transformer
7 10/9 Group meeting Backgr ound {es_earch
topic submission
8 10/14 Fall break (No class)
10/16 Quiz (Online)
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Reminder

1. Background research brief

Released on Tuesday 09/16/2025

Each groups should submit the following to prepare your background-research presentation and to seed your final
presentation/paper. Please aim to have a working draft ready for your group check-in on October 9th. After the group meeting, the
final version of the draft should be submitted by October 10th (Friday). This is not a graded assignment.

Things to include

1. Topic/ Area
- One sentence stating the focus
- 3-5 keywords
2. Research question / Problem
- 1-2 sentences clearly stating the core question or hypothesis
3. Mini annotated bibliography (3-5 papers) — for each paper include:

- Full citation (consistent style)

- 1-sentence contribution (key finding/idea)

- Method/Data (e.g., corpus, model, experiment)

- Relevance (why it matters for your group project)
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