
6. Problems with RNNs, LSTMs
LING-581-Natural Language Processing 1

Instructor: Hakyung Sung
September 30, 2025
*Acknowledgment: These course slides are based on materials from CS224N @ Stanford University; Dr. Kilho Shin @ Kyocera

Table of contents

1. Lesson plan

2. Problems with RNNs

3. LSTMs

4. Bidirectional/multi-layer RNNs/LSTMs

5. Wrap-up

1

Review

Review

• Language modeling

• Definition
• Applications

• approach 1?
• approach 2?
• approach 3?

2

Review

• Language modeling
• Definition

• Applications

• approach 1?
• approach 2?
• approach 3?

2

Review

• Language modeling
• Definition
• Applications

• approach 1?
• approach 2?
• approach 3?

2

Review

• Language modeling
• Definition
• Applications

• approach 1?

• approach 2?
• approach 3?

2

Review

• Language modeling
• Definition
• Applications

• approach 1?
• approach 2?

• approach 3?

2

Review

• Language modeling
• Definition
• Applications

• approach 1?
• approach 2?
• approach 3?

2

Review: n-gram language models

𝑃(𝑥𝑡+1 ∣ 𝑥𝑡, … , 𝑥1) ≈ 𝑃 (𝑥𝑡+1 ∣ 𝑥𝑡, … , 𝑥𝑡−𝑛+2)

• 𝑡: position of the current token in the sequence
• 𝑛: size of the 𝑛-gram (the model looks back 𝑛 − 1 tokens)

Only the last (𝑛 − 1) words matter.

3

Review: Conditional probability

• Definition:
𝑃(𝐴 ∣ 𝐵) = 𝑃(𝐴, 𝐵)

𝑃(𝐵) .

• Apply to Markov assumption:

𝑃(𝑥𝑡+1 ∣ 𝑥𝑡, … , 𝑥𝑡−𝑛+2) = 𝑃(𝑥𝑡+1, 𝑥𝑡, … , 𝑥𝑡−𝑛+2)
𝑃 (𝑥𝑡, … , 𝑥𝑡−𝑛+2) .

4

Review: Example

Every morning, my neighbor yelled at the _____

(4-gram) Conditioning only on the last three words:

Every morning, my neighbor yelled at the _____

̂𝑃 (𝑤 ∣ yelled at the) = count(yelled at the w)
count(yelled at the) .

Suppose in the corpus:

• yelled at the occurs 600 times,
• yelled at the dog occurs 250 times, so

𝑃(dog ∣ yelled at the) = 0.42,
• yelled at the kids occurs 180 times, so

𝑃(kids ∣ yelled at the) = 0.30.

5

Review: Example

Every morning, my neighbor yelled at the _____

(4-gram) Conditioning only on the last three words:

Every morning, my neighbor yelled at the _____

̂𝑃 (𝑤 ∣ yelled at the) = count(yelled at the w)
count(yelled at the) .

Suppose in the corpus:

• yelled at the occurs 600 times,
• yelled at the dog occurs 250 times, so

𝑃(dog ∣ yelled at the) = 0.42,
• yelled at the kids occurs 180 times, so

𝑃(kids ∣ yelled at the) = 0.30.

5

Review: Example

Every morning, my neighbor yelled at the _____

(4-gram) Conditioning only on the last three words:

Every morning, my neighbor yelled at the _____

̂𝑃 (𝑤 ∣ yelled at the) = count(yelled at the w)
count(yelled at the) .

Suppose in the corpus:

• yelled at the occurs 600 times,
• yelled at the dog occurs 250 times, so

𝑃(dog ∣ yelled at the) = 0.42,
• yelled at the kids occurs 180 times, so

𝑃(kids ∣ yelled at the) = 0.30.

5

Review: Example

Every morning, my neighbor yelled at the _____

(4-gram) Conditioning only on the last three words:

Every morning, my neighbor yelled at the _____

̂𝑃 (𝑤 ∣ yelled at the) = count(yelled at the w)
count(yelled at the) .

Suppose in the corpus:

• yelled at the occurs 600 times,
• yelled at the dog occurs 250 times, so

𝑃(dog ∣ yelled at the) = 0.42,
• yelled at the kids occurs 180 times, so

𝑃(kids ∣ yelled at the) = 0.30.

5

Review: Example

Every morning, my neighbor yelled at the _____

(4-gram) Conditioning only on the last three words:

Every morning, my neighbor yelled at the _____

̂𝑃 (𝑤 ∣ yelled at the) = count(yelled at the w)
count(yelled at the) .

Suppose in the corpus:

• yelled at the occurs 600 times,

• yelled at the dog occurs 250 times, so

𝑃(dog ∣ yelled at the) = 0.42,
• yelled at the kids occurs 180 times, so

𝑃(kids ∣ yelled at the) = 0.30.

5

Review: Example

Every morning, my neighbor yelled at the _____

(4-gram) Conditioning only on the last three words:

Every morning, my neighbor yelled at the _____

̂𝑃 (𝑤 ∣ yelled at the) = count(yelled at the w)
count(yelled at the) .

Suppose in the corpus:

• yelled at the occurs 600 times,
• yelled at the dog occurs 250 times, so

𝑃(dog ∣ yelled at the) = 0.42,

• yelled at the kids occurs 180 times, so
𝑃(kids ∣ yelled at the) = 0.30.

5

Review: Example

Every morning, my neighbor yelled at the _____

(4-gram) Conditioning only on the last three words:

Every morning, my neighbor yelled at the _____

̂𝑃 (𝑤 ∣ yelled at the) = count(yelled at the w)
count(yelled at the) .

Suppose in the corpus:

• yelled at the occurs 600 times,
• yelled at the dog occurs 250 times, so

𝑃(dog ∣ yelled at the) = 0.42,

• yelled at the kids occurs 180 times, so
𝑃(kids ∣ yelled at the) = 0.30.

5

Review: Example

Every morning, my neighbor yelled at the _____

(4-gram) Conditioning only on the last three words:

Every morning, my neighbor yelled at the _____

̂𝑃 (𝑤 ∣ yelled at the) = count(yelled at the w)
count(yelled at the) .

Suppose in the corpus:

• yelled at the occurs 600 times,
• yelled at the dog occurs 250 times, so

𝑃(dog ∣ yelled at the) = 0.42,
• yelled at the kids occurs 180 times, so

𝑃(kids ∣ yelled at the) = 0.30.

5

Review: Example

Every morning, my neighbor yelled at the _____

(4-gram) Conditioning only on the last three words:

Every morning, my neighbor yelled at the _____

̂𝑃 (𝑤 ∣ yelled at the) = count(yelled at the w)
count(yelled at the) .

Suppose in the corpus:

• yelled at the occurs 600 times,
• yelled at the dog occurs 250 times, so

𝑃(dog ∣ yelled at the) = 0.42,
• yelled at the kids occurs 180 times, so

𝑃(kids ∣ yelled at the) = 0.30.

5

Review: Example

Every morning, my neighbor yelled at the _____

(4-gram) Conditioning only on the last three words:

Every morning, my neighbor yelled at the _____

̂𝑃 (𝑤 ∣ yelled at the) = count(yelled at the w)
count(yelled at the) .

Suppose in the corpus:

• yelled at the occurs 600 times,
• yelled at the dog occurs 250 times, so

𝑃(dog ∣ yelled at the) = 0.42,
• yelled at the kids occurs 180 times, so

𝑃(kids ∣ yelled at the) = 0.30.

5

Review: Window-based neural language model

6

Review: RNNs

Good for processing continuous (time series) dataset like words in a
sentence.

7

Good for processing continuous (time series) dataset like words in a
sentence.

8

Good for processing continuous (time series) dataset like words in a
sentence.

9

Good for processing continuous (time series) dataset like words in a
sentence.

10

Good for processing continuous (time series) dataset like words in a
sentence.

11

Good for processing continuous (time series) dataset like words in a
sentence.

12

Good for processing continuous (time series) dataset like words in a
sentence.

13

Good for processing continuous (time series) dataset like words in a
sentence.

14

Review: RNNs

• Idea: Repeatedly apply the same weight matrix 𝑊 at each time
step

• Maintain a hidden state over time, feeding it back into the
network to capture temporal dependencies

15

Review: RNNs

1. Start with a corpus, represented as a sequence of words
𝑤1, … , 𝑤𝑇 −1, 𝑤𝑇 .

2. Feed this sequence into the RNN-based language model.
3. At each time step 𝑡, the model outputs a probability distribution

ŷ𝑡 over the vocabulary.

• Internally, the RNN updates its hidden state h𝑡, then applies a
linear layer followed by softmax:

ŷ𝑡 = softmax(𝑊𝑜 h𝑡 + 𝑏𝑜).

• Each component of ŷ𝑡 corresponds to

𝑃(𝑤𝑡+1 = 𝑣𝑖 ∣ 𝑤1, … , 𝑤𝑡),

i.e., the probability that the next word is 𝑣𝑖.
• Put simply, at every step 𝑡, the model predicts the likelihood of
each possible next word given all preceding words.

16

Review: RNNs

1. Start with a corpus, represented as a sequence of words
𝑤1, … , 𝑤𝑇 −1, 𝑤𝑇 .

2. Feed this sequence into the RNN-based language model.

3. At each time step 𝑡, the model outputs a probability distribution
ŷ𝑡 over the vocabulary.

• Internally, the RNN updates its hidden state h𝑡, then applies a
linear layer followed by softmax:

ŷ𝑡 = softmax(𝑊𝑜 h𝑡 + 𝑏𝑜).

• Each component of ŷ𝑡 corresponds to

𝑃(𝑤𝑡+1 = 𝑣𝑖 ∣ 𝑤1, … , 𝑤𝑡),

i.e., the probability that the next word is 𝑣𝑖.
• Put simply, at every step 𝑡, the model predicts the likelihood of
each possible next word given all preceding words.

16

Review: RNNs

1. Start with a corpus, represented as a sequence of words
𝑤1, … , 𝑤𝑇 −1, 𝑤𝑇 .

2. Feed this sequence into the RNN-based language model.
3. At each time step 𝑡, the model outputs a probability distribution

ŷ𝑡 over the vocabulary.

• Internally, the RNN updates its hidden state h𝑡, then applies a
linear layer followed by softmax:

ŷ𝑡 = softmax(𝑊𝑜 h𝑡 + 𝑏𝑜).

• Each component of ŷ𝑡 corresponds to

𝑃(𝑤𝑡+1 = 𝑣𝑖 ∣ 𝑤1, … , 𝑤𝑡),

i.e., the probability that the next word is 𝑣𝑖.
• Put simply, at every step 𝑡, the model predicts the likelihood of
each possible next word given all preceding words.

16

Review: RNNs

1. Start with a corpus, represented as a sequence of words
𝑤1, … , 𝑤𝑇 −1, 𝑤𝑇 .

2. Feed this sequence into the RNN-based language model.
3. At each time step 𝑡, the model outputs a probability distribution

ŷ𝑡 over the vocabulary.
• Internally, the RNN updates its hidden state h𝑡, then applies a
linear layer followed by softmax:

ŷ𝑡 = softmax(𝑊𝑜 h𝑡 + 𝑏𝑜).

• Each component of ŷ𝑡 corresponds to

𝑃(𝑤𝑡+1 = 𝑣𝑖 ∣ 𝑤1, … , 𝑤𝑡),

i.e., the probability that the next word is 𝑣𝑖.
• Put simply, at every step 𝑡, the model predicts the likelihood of
each possible next word given all preceding words.

16

Review: RNNs

1. Start with a corpus, represented as a sequence of words
𝑤1, … , 𝑤𝑇 −1, 𝑤𝑇 .

2. Feed this sequence into the RNN-based language model.
3. At each time step 𝑡, the model outputs a probability distribution

ŷ𝑡 over the vocabulary.
• Internally, the RNN updates its hidden state h𝑡, then applies a
linear layer followed by softmax:

ŷ𝑡 = softmax(𝑊𝑜 h𝑡 + 𝑏𝑜).

• Each component of ŷ𝑡 corresponds to

𝑃(𝑤𝑡+1 = 𝑣𝑖 ∣ 𝑤1, … , 𝑤𝑡),

i.e., the probability that the next word is 𝑣𝑖.

• Put simply, at every step 𝑡, the model predicts the likelihood of
each possible next word given all preceding words.

16

Review: RNNs

1. Start with a corpus, represented as a sequence of words
𝑤1, … , 𝑤𝑇 −1, 𝑤𝑇 .

2. Feed this sequence into the RNN-based language model.
3. At each time step 𝑡, the model outputs a probability distribution

ŷ𝑡 over the vocabulary.
• Internally, the RNN updates its hidden state h𝑡, then applies a
linear layer followed by softmax:

ŷ𝑡 = softmax(𝑊𝑜 h𝑡 + 𝑏𝑜).

• Each component of ŷ𝑡 corresponds to

𝑃(𝑤𝑡+1 = 𝑣𝑖 ∣ 𝑤1, … , 𝑤𝑡),

i.e., the probability that the next word is 𝑣𝑖.
• Put simply, at every step 𝑡, the model predicts the likelihood of
each possible next word given all preceding words.

16

• Loss at step 𝑡:

𝒥(𝑡) = −
|𝑉 |
∑
𝑖=1

𝑦(𝑡)
𝑖 log ̂𝑦(𝑡)

𝑖 = − log ̂𝑦(𝑡)
𝑤𝑡+1 ,

where:
• 𝑦(𝑡): one-hot vector for the true next word 𝑤𝑡+1.
• ̂𝑦(𝑡): predicted probability distribution over the vocabulary from
the softmax layer.

• This is the cross-entropy loss between the predicted distribution
and the true label.

• higher loss? lower loss?
• https://www.desmos.com/calculator

17

https://www.desmos.com/calculator

Review: RNNs+Backpropagation

18

Review: NLP applications

POS tagging

19

NER tagging

* A named entity is a specific word or phrase that refers to a
particular person, place, organization, money, time or other
real-world values. https://www.wisecube.ai/blog/named-entity-recognition-ner-with-python/

20

https://www.wisecube.ai/blog/named-entity-recognition-ner-with-python/

Sentiment classification

21

Question answering

22

Speech recognition

23

Lesson plan

Lesson plan

• Problems with RNNs

• LSTMs
• Bidirectional/multi-layer models

24

Lesson plan

• Problems with RNNs
• LSTMs

• Bidirectional/multi-layer models

24

Lesson plan

• Problems with RNNs
• LSTMs
• Bidirectional/multi-layer models

24

Problems with RNNs

Problem with RNN 1: Vanishing gradient

25

26

27

28

tldr: If each step’s gradient is too small, multiplying across many
steps makes it shrink exponentially.
The overall gradient → 0, so the model cannot learn long-range
dependencies.

29

More explanation: long-term dependency

30

More explanation: long-term dependency and chain rule

31

As we can see here, as time increases (as embedding nodes increase)

32

As we can see here, as time increases (as embedding nodes increase)

33

As we can see here, as time increases (as embedding nodes
increase), the part that needs to be calculated by the chain rule

34

As we can see here, as time increases (as embedding nodes
increase), the part that needs to be calculated by the chain rule

35

As we can see here, as time increases (as embedding nodes
increase), the part that needs to be calculated by the chain rule
keeps

36

As we can see here, as time increases (as embedding nodes
increase), the part that needs to be calculated by the chain rule
keeps increasing

37

If these parts are smaller than 1

38

Then, as we keep multiplying through the chain rule, the gradient
value for distant parts becomes smaller

39

A smaller gradient means that its effect on learning is negligible,

40

As a result, the farther back in time the input is, the smaller its effect
on learning becomes

41

Example:

• To learn from this training example, the LM needs to model the
dependency between “tickets” on the 7th step and the target
word “tickets” at the end.

• But if the gradient is small, the model can’t learn this
dependency

• So, the model is unable to predict similar long-distance
dependencies at test time

42

Example:

• To learn from this training example, the LM needs to model the
dependency between “tickets” on the 7th step and the target
word “tickets” at the end.

• But if the gradient is small, the model can’t learn this
dependency

• So, the model is unable to predict similar long-distance
dependencies at test time

42

Example:

• To learn from this training example, the LM needs to model the
dependency between “tickets” on the 7th step and the target
word “tickets” at the end.

• But if the gradient is small, the model can’t learn this
dependency

• So, the model is unable to predict similar long-distance
dependencies at test time

42

Example:

• To learn from this training example, the LM needs to model the
dependency between “tickets” on the 7th step and the target
word “tickets” at the end.

• But if the gradient is small, the model can’t learn this
dependency

• So, the model is unable to predict similar long-distance
dependencies at test time

42

Problem with RNN 2: Exploding gradient

• When gradients become very large:

• A single update step can overshoot the minimum
• and destabilize or even blow up the model..!

43

Problem with RNN 2: Exploding gradient

• When gradients become very large:
• A single update step can overshoot the minimum

• and destabilize or even blow up the model..!

43

Problem with RNN 2: Exploding gradient

• When gradients become very large:
• A single update step can overshoot the minimum
• and destabilize or even blow up the model..!

43

Problems: Summary

• RNNs are equivalent to a deep network of depth 𝑇 when
unrolled over time (T = sequence length/time steps)

• Parameter sharing: the same weight matrices are multiplied at
each time step.

• If each multiplication factor:

• is < 1, gradients shrink exponentially (vanishing).
• is > 1, gradients grow exponentially (exploding).

• Standard feedforward nets have limited depth, so this extreme
behavior is less pronounced.

44

Problems: Summary

• RNNs are equivalent to a deep network of depth 𝑇 when
unrolled over time (T = sequence length/time steps)

• Parameter sharing: the same weight matrices are multiplied at
each time step.

• If each multiplication factor:

• is < 1, gradients shrink exponentially (vanishing).
• is > 1, gradients grow exponentially (exploding).

• Standard feedforward nets have limited depth, so this extreme
behavior is less pronounced.

44

Problems: Summary

• RNNs are equivalent to a deep network of depth 𝑇 when
unrolled over time (T = sequence length/time steps)

• Parameter sharing: the same weight matrices are multiplied at
each time step.

• If each multiplication factor:

• is < 1, gradients shrink exponentially (vanishing).
• is > 1, gradients grow exponentially (exploding).

• Standard feedforward nets have limited depth, so this extreme
behavior is less pronounced.

44

Problems: Summary

• RNNs are equivalent to a deep network of depth 𝑇 when
unrolled over time (T = sequence length/time steps)

• Parameter sharing: the same weight matrices are multiplied at
each time step.

• If each multiplication factor:
• is < 1, gradients shrink exponentially (vanishing).

• is > 1, gradients grow exponentially (exploding).
• Standard feedforward nets have limited depth, so this extreme
behavior is less pronounced.

44

Problems: Summary

• RNNs are equivalent to a deep network of depth 𝑇 when
unrolled over time (T = sequence length/time steps)

• Parameter sharing: the same weight matrices are multiplied at
each time step.

• If each multiplication factor:
• is < 1, gradients shrink exponentially (vanishing).
• is > 1, gradients grow exponentially (exploding).

• Standard feedforward nets have limited depth, so this extreme
behavior is less pronounced.

44

Problems: Summary

• RNNs are equivalent to a deep network of depth 𝑇 when
unrolled over time (T = sequence length/time steps)

• Parameter sharing: the same weight matrices are multiplied at
each time step.

• If each multiplication factor:
• is < 1, gradients shrink exponentially (vanishing).
• is > 1, gradients grow exponentially (exploding).

• Standard feedforward nets have limited depth, so this extreme
behavior is less pronounced.

44

Vanishing problem: Solution

Solutions explored:

• Separate memory cell (e.g., LSTM) with gating mechanisms to
add/erase information.

• Direct pass-through connections (attention, residual links) for
better gradient flow.

45

Vanishing problem: Solution

Solutions explored:

• Separate memory cell (e.g., LSTM) with gating mechanisms to
add/erase information.

• Direct pass-through connections (attention, residual links) for
better gradient flow.

45

LSTMs

Overview

Separate memory cell with gating mechanisms to add/erase
information.

46

1. Structure

Then, let’s understand LSTM’s separate memory cell.

47

The secret lies in the information called the cell state (CS).

48

And LSTM has four gates that differ from an RNN.

49

And LSTM has four gates that differ from an RNN.

50

And LSTM has four gates that differ from an RNN.

51

And LSTM has four gates that differ from an RNN.

52

And LSTM has four gates that differ from an RNN.

53

Originally, each gate and layer should include a bias term.

54

But for convenience, we’ll omit them for now.

55

Now, let’s see how each gate processes information.

56

First, as the name suggests, the Forget Gate decides which
information to erase (forget).

57

The input to the the Forget Gate is the concatenation of the previous
hidden state (𝐻𝑆𝑡−1) and the current input (𝑥𝑡).

58

Concatenate?

Joining two vectors/matrices end-to-end.

59

Concatenate? Joining two vectors/matrices end-to-end.

59

Concatenate? Joining two vectors/matrices end-to-end.

60

By doing this, the concatenated 𝑥𝑡 becomes a kind of short-term
memory that bundles the previous hidden state and the current
input together.

61

Remember: this 𝑥𝑡 serves as the input to all gates in the LSTM.

62

The first thing to note in the Forget Gate is:

63

There is a sigmoid function inside the Forget Gate.

64

As we learned about the sigmoid, regardless of the input,

65

it returns a value between 0 and 1.

66

So, what the Forget Gate does is: it takes the (just-prior + current)
input, multiplies by weights,

67

and maps it to values between 0 and 1.

68

Then, these 0–1 values meet the cell state values

69

and undergo element-wise multiplication.

70

Notes: Element-wise multiplication means multiplying two matrices
by their corresponding elements.

71

Notes: Element-wise multiplication means multiplying two matrices
by their corresponding elements.

72

We do this so that entries near 1 are kept

73

and entries near 0 are erased (forgotten).

74

For example, suppose the Forget Gate’s output consisted only of 0s
and 1s.

75

Where the Forget Gate outputs 0, the element-wise product

76

turns those cell-state entries to 0 (or effectively very small).

77

In short, as the cell state (CS) passes through the Forget Gate, it
forgets what should be forgotten.

78

Next, the Input Gate. Its computation is the same pattern as the
Forget Gate

79

because both use a sigmoid function.

80

(But) the weights are different.

81

This Input Gate works together with the Candidate Gate

82

to update the cell state with what should be “remembered.”

83

The Candidate Gate uses tanh rather than a sigmoid inside.

84

The tanh function maps inputs to values between −1 and 1.

85

So, what the Candidate Gate does is: multiply the input by weights,

86

and then preserve the sign while normalizing the range.

87

Then, via element-wise multiplication with the 0–1 values from the
Input Gate,

88

some Candidate outputs are pushed close to 0 while others are kept
as they are.

89

Those kept values

90

become the parts of the current input (short-term) to be
remembered.

91

Then the remaining values are added into the cell state to update it.

92

In short, given the previous hidden state and the current input,

93

we forget what should be forgotten from the previous cell state,

94

and remember what should be remembered,

95

thereby updating LSTM’s long-term memory (the cell state).

96

Next, we normalize this long-term state via tanh (to [−1, 1]),

97

and take an element-wise product with the Output Gate’s values.

98

This produces the new hidden state 𝐻𝑆𝑡.

99

Just as the collaboration of the Input Gate and Candidate Gate keeps
the “to-be-remembered” part of the current (short-term) input,

100

the collaboration of the Output Gate and tanh(𝐶𝑆𝑡) creates a new
hidden state (𝐻𝑆𝑡) from the updated cell state (𝐶𝑆𝑡) that reflects the
characteristics of the current input (𝑋𝑡) more strongly.

101

Thus this hidden state (𝐻𝑆𝑡) tends to show more short-term
characteristics than 𝐶𝑆𝑡.

102

So if 𝐶𝑆𝑡 carries more long-term information,

103

𝐻𝑆𝑡, given the same inputs, carries information closer to short-term,

104

and by leveraging these two information flows, LSTM can handle
long-term dependency problems more effectively than a vanilla
RNN.

105

2. Real-world success in NLP tasks

• Introduced by Hochreiter & Schmidhuber (1997)

• In 2013-2025, LSTMs started achieving state-of-the-art results in
NLP tasks, including:

• handwriting recognition, speech recognition, machine translation,
parsing, and image captioning, as well as language modeling

• Recently (2019-2025), Transformers have become dominant for
all tasks

• For example, in WMT (a Machine Translation
conference/competition):

• In WMT 2014, there were 0 neural machine translation systems
• In WMT 2016, the summary report contains RNN 44 times (and these
systems won)

• In WMT 2019: RNN 7 times, Transformer 105 times

106

2. Real-world success in NLP tasks

• Introduced by Hochreiter & Schmidhuber (1997)
• In 2013-2025, LSTMs started achieving state-of-the-art results in
NLP tasks, including:

• handwriting recognition, speech recognition, machine translation,
parsing, and image captioning, as well as language modeling

• Recently (2019-2025), Transformers have become dominant for
all tasks

• For example, in WMT (a Machine Translation
conference/competition):

• In WMT 2014, there were 0 neural machine translation systems
• In WMT 2016, the summary report contains RNN 44 times (and these
systems won)

• In WMT 2019: RNN 7 times, Transformer 105 times

106

2. Real-world success in NLP tasks

• Introduced by Hochreiter & Schmidhuber (1997)
• In 2013-2025, LSTMs started achieving state-of-the-art results in
NLP tasks, including:

• handwriting recognition, speech recognition, machine translation,
parsing, and image captioning, as well as language modeling

• Recently (2019-2025), Transformers have become dominant for
all tasks

• For example, in WMT (a Machine Translation
conference/competition):

• In WMT 2014, there were 0 neural machine translation systems
• In WMT 2016, the summary report contains RNN 44 times (and these
systems won)

• In WMT 2019: RNN 7 times, Transformer 105 times

106

2. Real-world success in NLP tasks

• Introduced by Hochreiter & Schmidhuber (1997)
• In 2013-2025, LSTMs started achieving state-of-the-art results in
NLP tasks, including:

• handwriting recognition, speech recognition, machine translation,
parsing, and image captioning, as well as language modeling

• Recently (2019-2025), Transformers have become dominant for
all tasks

• For example, in WMT (a Machine Translation
conference/competition):

• In WMT 2014, there were 0 neural machine translation systems
• In WMT 2016, the summary report contains RNN 44 times (and these
systems won)

• In WMT 2019: RNN 7 times, Transformer 105 times

106

2. Real-world success in NLP tasks

• Introduced by Hochreiter & Schmidhuber (1997)
• In 2013-2025, LSTMs started achieving state-of-the-art results in
NLP tasks, including:

• handwriting recognition, speech recognition, machine translation,
parsing, and image captioning, as well as language modeling

• Recently (2019-2025), Transformers have become dominant for
all tasks

• For example, in WMT (a Machine Translation
conference/competition):

• In WMT 2014, there were 0 neural machine translation systems
• In WMT 2016, the summary report contains RNN 44 times (and these
systems won)

• In WMT 2019: RNN 7 times, Transformer 105 times

106

2. Real-world success in NLP tasks

• Introduced by Hochreiter & Schmidhuber (1997)
• In 2013-2025, LSTMs started achieving state-of-the-art results in
NLP tasks, including:

• handwriting recognition, speech recognition, machine translation,
parsing, and image captioning, as well as language modeling

• Recently (2019-2025), Transformers have become dominant for
all tasks

• For example, in WMT (a Machine Translation
conference/competition):

• In WMT 2014, there were 0 neural machine translation systems

• In WMT 2016, the summary report contains RNN 44 times (and these
systems won)

• In WMT 2019: RNN 7 times, Transformer 105 times

106

2. Real-world success in NLP tasks

• Introduced by Hochreiter & Schmidhuber (1997)
• In 2013-2025, LSTMs started achieving state-of-the-art results in
NLP tasks, including:

• handwriting recognition, speech recognition, machine translation,
parsing, and image captioning, as well as language modeling

• Recently (2019-2025), Transformers have become dominant for
all tasks

• For example, in WMT (a Machine Translation
conference/competition):

• In WMT 2014, there were 0 neural machine translation systems
• In WMT 2016, the summary report contains RNN 44 times (and these
systems won)

• In WMT 2019: RNN 7 times, Transformer 105 times

106

2. Real-world success in NLP tasks

• Introduced by Hochreiter & Schmidhuber (1997)
• In 2013-2025, LSTMs started achieving state-of-the-art results in
NLP tasks, including:

• handwriting recognition, speech recognition, machine translation,
parsing, and image captioning, as well as language modeling

• Recently (2019-2025), Transformers have become dominant for
all tasks

• For example, in WMT (a Machine Translation
conference/competition):

• In WMT 2014, there were 0 neural machine translation systems
• In WMT 2016, the summary report contains RNN 44 times (and these
systems won)

• In WMT 2019: RNN 7 times, Transformer 105 times

106

Bidirectional/multi-layer
RNNs/LSTMs

1. Motivation

• A standard RNN only uses past context.

• For many NLP tasks (e.g., tagging, parsing, translation), knowing
both previous and future contexts improves predictions.

• Bidirectional RNNs address this by processing the sequence in
both directions.

107

1. Motivation

• A standard RNN only uses past context.
• For many NLP tasks (e.g., tagging, parsing, translation), knowing
both previous and future contexts improves predictions.

• Bidirectional RNNs address this by processing the sequence in
both directions.

107

1. Motivation

• A standard RNN only uses past context.
• For many NLP tasks (e.g., tagging, parsing, translation), knowing
both previous and future contexts improves predictions.

• Bidirectional RNNs address this by processing the sequence in
both directions.

107

108

Forward + Backward: The contextual representation of “terribly” has
both left and right context.

109

110

2. More information

• Hidden states combine forward and backward context.

• Require access to the entire sequence (not suitable for language
modeling).

• Very effective for encoding tasks (e.g., tagging, parsing,
translation).

• Example: BERT (Bidirectional Encoder Representations from
Transformers) leverages bidirectionality for powerful contextual
embeddings.

• Can be extended by stacking layers (Multi-layer RNNs).

111

2. More information

• Hidden states combine forward and backward context.
• Require access to the entire sequence (not suitable for language
modeling).

• Very effective for encoding tasks (e.g., tagging, parsing,
translation).

• Example: BERT (Bidirectional Encoder Representations from
Transformers) leverages bidirectionality for powerful contextual
embeddings.

• Can be extended by stacking layers (Multi-layer RNNs).

111

2. More information

• Hidden states combine forward and backward context.
• Require access to the entire sequence (not suitable for language
modeling).

• Very effective for encoding tasks (e.g., tagging, parsing,
translation).

• Example: BERT (Bidirectional Encoder Representations from
Transformers) leverages bidirectionality for powerful contextual
embeddings.

• Can be extended by stacking layers (Multi-layer RNNs).

111

2. More information

• Hidden states combine forward and backward context.
• Require access to the entire sequence (not suitable for language
modeling).

• Very effective for encoding tasks (e.g., tagging, parsing,
translation).

• Example: BERT (Bidirectional Encoder Representations from
Transformers) leverages bidirectionality for powerful contextual
embeddings.

• Can be extended by stacking layers (Multi-layer RNNs).

111

2. More information

• Hidden states combine forward and backward context.
• Require access to the entire sequence (not suitable for language
modeling).

• Very effective for encoding tasks (e.g., tagging, parsing,
translation).

• Example: BERT (Bidirectional Encoder Representations from
Transformers) leverages bidirectionality for powerful contextual
embeddings.

• Can be extended by stacking layers (Multi-layer RNNs).

111

Wrap-up

Wrap-up

• RNNs

• Problems with RNNs: Vanishing & Exploding
• LSTMs: Short-term/Long-term

• Four gates
• 1. Forget gates
• 2. Input Gate
• 3. Candidate Gate
• 4. Output Gates

• Bidirectional RNNs for more context

112

Wrap-up

• RNNs
• Problems with RNNs: Vanishing & Exploding

• LSTMs: Short-term/Long-term

• Four gates
• 1. Forget gates
• 2. Input Gate
• 3. Candidate Gate
• 4. Output Gates

• Bidirectional RNNs for more context

112

Wrap-up

• RNNs
• Problems with RNNs: Vanishing & Exploding
• LSTMs: Short-term/Long-term

• Four gates
• 1. Forget gates
• 2. Input Gate
• 3. Candidate Gate
• 4. Output Gates

• Bidirectional RNNs for more context

112

Wrap-up

• RNNs
• Problems with RNNs: Vanishing & Exploding
• LSTMs: Short-term/Long-term

• Four gates

• 1. Forget gates
• 2. Input Gate
• 3. Candidate Gate
• 4. Output Gates

• Bidirectional RNNs for more context

112

Wrap-up

• RNNs
• Problems with RNNs: Vanishing & Exploding
• LSTMs: Short-term/Long-term

• Four gates
• 1. Forget gates

• 2. Input Gate
• 3. Candidate Gate
• 4. Output Gates

• Bidirectional RNNs for more context

112

Wrap-up

• RNNs
• Problems with RNNs: Vanishing & Exploding
• LSTMs: Short-term/Long-term

• Four gates
• 1. Forget gates
• 2. Input Gate

• 3. Candidate Gate
• 4. Output Gates

• Bidirectional RNNs for more context

112

Wrap-up

• RNNs
• Problems with RNNs: Vanishing & Exploding
• LSTMs: Short-term/Long-term

• Four gates
• 1. Forget gates
• 2. Input Gate
• 3. Candidate Gate

• 4. Output Gates

• Bidirectional RNNs for more context

112

Wrap-up

• RNNs
• Problems with RNNs: Vanishing & Exploding
• LSTMs: Short-term/Long-term

• Four gates
• 1. Forget gates
• 2. Input Gate
• 3. Candidate Gate
• 4. Output Gates

• Bidirectional RNNs for more context

112

Wrap-up

• RNNs
• Problems with RNNs: Vanishing & Exploding
• LSTMs: Short-term/Long-term

• Four gates
• 1. Forget gates
• 2. Input Gate
• 3. Candidate Gate
• 4. Output Gates

• Bidirectional RNNs for more context

112

Where we are at

113

Reminder

114

	Review
	Lesson plan
	Problems with RNNs
	LSTMs
	Bidirectional/multi-layer RNNs/LSTMs
	Wrap-up

