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Review: n-gram language models

𝑃(𝑥𝑡+1 ∣ 𝑥𝑡, … , 𝑥1) ≈ 𝑃 (𝑥𝑡+1 ∣ 𝑥𝑡, … , 𝑥𝑡−𝑛+2)

• 𝑡: position of the current token in the sequence
• 𝑛: size of the 𝑛-gram (the model looks back 𝑛 − 1 tokens)

Only the last (𝑛 − 1) words matter.
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Review: Conditional probability

• Definition:
𝑃(𝐴 ∣ 𝐵) = 𝑃(𝐴, 𝐵)

𝑃(𝐵) .

• Apply to Markov assumption:

𝑃(𝑥𝑡+1 ∣ 𝑥𝑡, … , 𝑥𝑡−𝑛+2) = 𝑃(𝑥𝑡+1, 𝑥𝑡, … , 𝑥𝑡−𝑛+2)
𝑃 (𝑥𝑡, … , 𝑥𝑡−𝑛+2) .
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Review: Example

Every morning, my neighbor yelled at the _____

(4-gram) Conditioning only on the last three words:

Every morning, my neighbor yelled at the _____

̂𝑃 (𝑤 ∣ yelled at the) = count(yelled at the w)
count(yelled at the) .

Suppose in the corpus:

• yelled at the occurs 600 times,
• yelled at the dog occurs 250 times, so

𝑃(dog ∣ yelled at the) = 0.42,
• yelled at the kids occurs 180 times, so

𝑃(kids ∣ yelled at the) = 0.30.
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Review: Window-based neural language model

6



Review: RNNs

Good for processing continuous (time series) dataset like words in a
sentence.
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Review: RNNs

• Idea: Repeatedly apply the same weight matrix 𝑊 at each time
step

• Maintain a hidden state over time, feeding it back into the
network to capture temporal dependencies
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Review: RNNs

1. Start with a corpus, represented as a sequence of words
𝑤1, … , 𝑤𝑇 −1, 𝑤𝑇 .

2. Feed this sequence into the RNN-based language model.
3. At each time step 𝑡, the model outputs a probability distribution

ŷ𝑡 over the vocabulary.

• Internally, the RNN updates its hidden state h𝑡, then applies a
linear layer followed by softmax:

ŷ𝑡 = softmax(𝑊𝑜 h𝑡 + 𝑏𝑜).

• Each component of ŷ𝑡 corresponds to

𝑃(𝑤𝑡+1 = 𝑣𝑖 ∣ 𝑤1, … , 𝑤𝑡),

i.e., the probability that the next word is 𝑣𝑖.
• Put simply, at every step 𝑡, the model predicts the likelihood of
each possible next word given all preceding words.
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𝑃(𝑤𝑡+1 = 𝑣𝑖 ∣ 𝑤1, … , 𝑤𝑡),

i.e., the probability that the next word is 𝑣𝑖.
• Put simply, at every step 𝑡, the model predicts the likelihood of
each possible next word given all preceding words.

16



Review: RNNs

1. Start with a corpus, represented as a sequence of words
𝑤1, … , 𝑤𝑇 −1, 𝑤𝑇 .

2. Feed this sequence into the RNN-based language model.
3. At each time step 𝑡, the model outputs a probability distribution
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ŷ𝑡 = softmax(𝑊𝑜 h𝑡 + 𝑏𝑜).

• Each component of ŷ𝑡 corresponds to
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• Loss at step 𝑡:

𝒥(𝑡) = −
|𝑉 |
∑
𝑖=1

𝑦(𝑡)
𝑖 log ̂𝑦(𝑡)

𝑖 = − log ̂𝑦(𝑡)
𝑤𝑡+1 ,

where:
• 𝑦(𝑡): one-hot vector for the true next word 𝑤𝑡+1.
• ̂𝑦(𝑡): predicted probability distribution over the vocabulary from
the softmax layer.

• This is the cross-entropy loss between the predicted distribution
and the true label.

• higher loss? lower loss?
• https://www.desmos.com/calculator
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Review: RNNs+Backpropagation
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Review: NLP applications

POS tagging
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NER tagging

* A named entity is a specific word or phrase that refers to a
particular person, place, organization, money, time or other
real-world values. https://www.wisecube.ai/blog/named-entity-recognition-ner-with-python/
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Sentiment classification
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Question answering

22



Speech recognition
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• Problems with RNNs

• LSTMs
• Bidirectional/multi-layer models
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Problems with RNNs



Problem with RNN 1: Vanishing gradient
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tldr: If each step’s gradient is too small, multiplying across many
steps makes it shrink exponentially.
The overall gradient → 0, so the model cannot learn long-range
dependencies.
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More explanation: long-term dependency
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More explanation: long-term dependency and chain rule
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As we can see here, as time increases (as embedding nodes increase)
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As we can see here, as time increases (as embedding nodes
increase), the part that needs to be calculated by the chain rule
keeps increasing
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If these parts are smaller than 1
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Then, as we keep multiplying through the chain rule, the gradient
value for distant parts becomes smaller
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A smaller gradient means that its effect on learning is negligible,
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As a result, the farther back in time the input is, the smaller its effect
on learning becomes
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Example:

• To learn from this training example, the LM needs to model the
dependency between “tickets” on the 7th step and the target
word “tickets” at the end.

• But if the gradient is small, the model can’t learn this
dependency

• So, the model is unable to predict similar long-distance
dependencies at test time
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Problem with RNN 2: Exploding gradient

• When gradients become very large:

• A single update step can overshoot the minimum
• and destabilize or even blow up the model..!
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Problems: Summary

• RNNs are equivalent to a deep network of depth 𝑇 when
unrolled over time (T = sequence length/time steps)

• Parameter sharing: the same weight matrices are multiplied at
each time step.

• If each multiplication factor:

• is < 1, gradients shrink exponentially (vanishing).
• is > 1, gradients grow exponentially (exploding).

• Standard feedforward nets have limited depth, so this extreme
behavior is less pronounced.
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Vanishing problem: Solution

Solutions explored:

• Separate memory cell (e.g., LSTM) with gating mechanisms to
add/erase information.

• Direct pass-through connections (attention, residual links) for
better gradient flow.
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LSTMs



Overview

Separate memory cell with gating mechanisms to add/erase
information.
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1. Structure

Then, let’s understand LSTM’s separate memory cell.
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The secret lies in the information called the cell state (CS).
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And LSTM has four gates that differ from an RNN.
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And LSTM has four gates that differ from an RNN.
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Originally, each gate and layer should include a bias term.
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But for convenience, we’ll omit them for now.
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Now, let’s see how each gate processes information.
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First, as the name suggests, the Forget Gate decides which
information to erase (forget).
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The input to the the Forget Gate is the concatenation of the previous
hidden state (𝐻𝑆𝑡−1) and the current input (𝑥𝑡).
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Concatenate?

Joining two vectors/matrices end-to-end.
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Concatenate? Joining two vectors/matrices end-to-end.
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By doing this, the concatenated 𝑥𝑡 becomes a kind of short-term
memory that bundles the previous hidden state and the current
input together.
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Remember: this 𝑥𝑡 serves as the input to all gates in the LSTM.
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The first thing to note in the Forget Gate is:
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There is a sigmoid function inside the Forget Gate.
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As we learned about the sigmoid, regardless of the input,

65



it returns a value between 0 and 1.
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So, what the Forget Gate does is: it takes the (just-prior + current)
input, multiplies by weights,

67



and maps it to values between 0 and 1.

68



Then, these 0–1 values meet the cell state values

69



and undergo element-wise multiplication.

70



Notes: Element-wise multiplication means multiplying two matrices
by their corresponding elements.
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Notes: Element-wise multiplication means multiplying two matrices
by their corresponding elements.

72



We do this so that entries near 1 are kept

73



and entries near 0 are erased (forgotten).
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For example, suppose the Forget Gate’s output consisted only of 0s
and 1s.
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Where the Forget Gate outputs 0, the element-wise product

76



turns those cell-state entries to 0 (or effectively very small).
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In short, as the cell state (CS) passes through the Forget Gate, it
forgets what should be forgotten.
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Next, the Input Gate. Its computation is the same pattern as the
Forget Gate

79



because both use a sigmoid function.
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(But) the weights are different.
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This Input Gate works together with the Candidate Gate
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to update the cell state with what should be “remembered.”
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The Candidate Gate uses tanh rather than a sigmoid inside.
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The tanh function maps inputs to values between −1 and 1.
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So, what the Candidate Gate does is: multiply the input by weights,
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and then preserve the sign while normalizing the range.
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Then, via element-wise multiplication with the 0–1 values from the
Input Gate,

88



some Candidate outputs are pushed close to 0 while others are kept
as they are.
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Those kept values
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become the parts of the current input (short-term) to be
remembered.

91



Then the remaining values are added into the cell state to update it.
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In short, given the previous hidden state and the current input,

93



we forget what should be forgotten from the previous cell state,
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and remember what should be remembered,

95



thereby updating LSTM’s long-term memory (the cell state).
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Next, we normalize this long-term state via tanh (to [−1, 1]),
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and take an element-wise product with the Output Gate’s values.
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This produces the new hidden state 𝐻𝑆𝑡.
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Just as the collaboration of the Input Gate and Candidate Gate keeps
the “to-be-remembered” part of the current (short-term) input,
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the collaboration of the Output Gate and tanh(𝐶𝑆𝑡) creates a new
hidden state (𝐻𝑆𝑡) from the updated cell state (𝐶𝑆𝑡) that reflects the
characteristics of the current input (𝑋𝑡) more strongly.
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Thus this hidden state (𝐻𝑆𝑡) tends to show more short-term
characteristics than 𝐶𝑆𝑡.
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So if 𝐶𝑆𝑡 carries more long-term information,
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𝐻𝑆𝑡, given the same inputs, carries information closer to short-term,
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and by leveraging these two information flows, LSTM can handle
long-term dependency problems more effectively than a vanilla
RNN.
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2. Real-world success in NLP tasks

• Introduced by Hochreiter & Schmidhuber (1997)

• In 2013-2025, LSTMs started achieving state-of-the-art results in
NLP tasks, including:

• handwriting recognition, speech recognition, machine translation,
parsing, and image captioning, as well as language modeling

• Recently (2019-2025), Transformers have become dominant for
all tasks

• For example, in WMT (a Machine Translation
conference/competition):

• In WMT 2014, there were 0 neural machine translation systems
• In WMT 2016, the summary report contains RNN 44 times (and these
systems won)

• In WMT 2019: RNN 7 times, Transformer 105 times

106
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Bidirectional/multi-layer
RNNs/LSTMs



1. Motivation

• A standard RNN only uses past context.

• For many NLP tasks (e.g., tagging, parsing, translation), knowing
both previous and future contexts improves predictions.

• Bidirectional RNNs address this by processing the sequence in
both directions.
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Forward + Backward: The contextual representation of “terribly” has
both left and right context.
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2. More information

• Hidden states combine forward and backward context.

• Require access to the entire sequence (not suitable for language
modeling).

• Very effective for encoding tasks (e.g., tagging, parsing,
translation).

• Example: BERT (Bidirectional Encoder Representations from
Transformers) leverages bidirectionality for powerful contextual
embeddings.

• Can be extended by stacking layers (Multi-layer RNNs).
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Wrap-up

• RNNs

• Problems with RNNs: Vanishing & Exploding
• LSTMs: Short-term/Long-term

• Four gates
• 1. Forget gates
• 2. Input Gate
• 3. Candidate Gate
• 4. Output Gates

• Bidirectional RNNs for more context
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Where we are at
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Reminder
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